Direkt zu



Herr Jun. Prof. Dr.-Ing.
Niels Hansen

Dieses Bild zeigt  Niels Hansen
Telefon 0049 711 685-66112
Universität Stuttgart
Institut für Technische Thermodynamik und Thermische Verfahrenstechnik
Pfaffenwaldring 9
70569 Stuttgart



[1] J. Smiatek, N. Hansen, J. Kästner, Free energy calculation methods and rare event sampling techniques for biomolecular simulations, in "Simulating Enzyme Reactivity'', Eds: I. Tuñón und V. Moliner, RSC Cambridge, in press (2016)


[30] W. F. van Gunsteren, J. R. Allison, X. Daura, J. Dolenc, N. Hansen, A. E. Mark, C. Oostenbrink, V. H. Rusu, L. J. Smith, Deriving structural information from experimentally measured data on biomolecules: a review
Angew. Chem. Int. Ed. (2016), Accepted.

[29] L. J. Smith, W. F. van Gunsteren, N. Hansen, On the use of time-averaging restraints when deriving biomolecular structure from 3 J-coupling values obtained from NMR experiments, J. Biomol. NMR 66 (2016) 69-83.

[28] J. Gebhardt, N. Hansen, Calculation of binding affinities for linear alcohols to α-cyclodextrin by twin-system enveloping distribution sampling simulations, Fluid Phase Equilib. 422 (2016) 1-17

[27] L. J. Smith, W. F. van Gunsteren, N. Hansen, Characterization of the flexible lip regions in bacteriophage lambda lysozyme using MD simulations, Eur. Biophys. J. 44 (2015), 235-247.

[26] A. P. Eichenberger, W. F. van Gunsteren, S. Riniker, L. von Ziegler, N. Hansen, The key to predicting the stability of protein mutants lies in an accurate description and proper configurational sampling of the folded and denatured states, Biochim. Biophys. Acta 1850 (2015) 983-995.

[25] W. Huang, N. Hansen, W. F. van Gunsteren, On the use of a supra-molecular coarse-grained
model for the solvent in simulations of the folding equilibrium of an octa-beta-peptide in MeOH
and H2O, Helv. Chim. Acta 97 (2014), 1591-1605.

[24] N. Hansen, F. Heller, N. Schmid, and W. F. van Gunsteren, Time-averaged order parameter
restraints in molecular dynamics simulations, J. Biomol. NMR 60 (2014), 169-187.

[23] N. Hansen and W. F. van Gunsteren, Practical aspects of free-energy calculations: A review,
J. Chem. Theory Comput. 10 (2014), 2632-2647.

[22] N. Hansen, J. R. Allison, F. H. Hodel, and W. F. van Gunsteren, Relative free enthalpies for point mutations in two proteins with highly similar sequence but different folds, Biochemistry, 52 (2013), 4962-4970.

[21] N. Hansen and F. J. Keil, Multiscale approaches for modeling hydrocarbon conversion reactions in zeolites, Chem. Ing. Tech., 85 (2013), 413-419.

[20] N. Hansen, P. H. Hünenberger, and W. F. van Gunsteren, Efficient combination of Environment change and alchemical perturbation within the Enveloping Distribution Sampling (EDS) scheme: Twin-system EDS and application to the determination of octanol-water partition coefficients, J. Chem. Theory Comput., 9 (2013), 1334-1346.

[19] D. C. Tranca, N. Hansen, J. A. Swisher, B. Smit, and F. J. Keil, Combined density functional theory and Monte Carlo analysis of monomolecular cracking of light alkanes over H-ZSM-5, J. Phys. Chem. C, 116 (2012), 23408-23417.

[18] B. Dahlgren, M. M. Reif, P. H. Hünenberger, and N. Hansen, Calculation of derivative thermodynamic hydration and aqueous partial molar properties of ions based on atomistic simulations, J. Chem. Theory Comput., 8 (2012), 3542-3564.

[17] N. Hansen, J. Dolenc, S. Riniker, M. Knecht, and W. F. van Gunsteren, Assessment of enveloping distribution sampling to calculate relative free enthalpies of binding for eight netropsin-DNA duplex complexes in aqueous solution, J. Comput. Chem., 33 (2012), 640-651.

[16] N. Hansen and F. J. Keil, Multiscale modelling of reaction and diffusion in zeolites: From the molecular level to the reactor, Soft Mater., 10 (2012), 179-201.

[15] J. R. Allison, M. Bergeler, N. Hansen, and W. F. van Gunsteren, Current computer modeling cannot explain why two highly similar sequences fold into different structures, Biochemistry, 50 (2011), 10965-10973.

[14] N. Hansen, P. Kraus, H. Saßmannshausen, T. Timmerscheidt, and W. F. van Gunsteren, An effective force field for molecular dynamics simulations of dimethyl sulfone, Mol. Phys., 109 (2011), 2593-2605.

[13] S. Riniker, C. D. Christ, N. Hansen, A. E. Mark, P. C. Nair, and W. F. van Gunsteren, Comparison of enveloping distribution sampling and thermodynamic integration to calculate binding free energies of phenylethanolamine N-methyltransferase inhibitors, J. Chem. Phys., 135 (2011), 024105.

[12] N. Hansen, T. Kerber, J. Sauer, A. T. Bell, and F. J. Keil, Quantum chemical modeling of benzene ethylation over H-ZSM-5 approaching chemical accuracy: A hybrid MP2:DFT study, J. Am. Chem. Soc., 132 (2010), 11525-11538.

[11] J. A. Swisher, N. Hansen, T. Maesen, F. J. Keil, B. Smit, and A. T. Bell, Theoretical simulation of n-alkane cracking on zeolites, J. Phys. Chem. C, 114 (2010), 10229-10239.

[10] N. Hansen, R. Krishna, J. M. van Baten, A. T. Bell, and F. J. Keil, Reactor simulation of benzene ethylation and ethane dehydrogenation catalyzed by ZSM-5: A multiscale approach, Chem. Eng. Sci., 65 (2010), 2472-2480.

[9] N. Hansen, R. Krishna, J. M. van Baten, A. T. Bell, and F. J. Keil, Analysis of diffusion limitation in the alkylation of benzene over H-ZSM-5 by combining quantum chemical calculations, molecular simulations, and a continuum approach, J. Phys. Chem., C 113 (2009), 235-246.

[8] N. Hansen, T. Brüggemann, A. T. Bell, and F. J. Keil, Theoretical investigation of benzene alkylation with ethene over H-ZSM-5, J. Phys. Chem. C, 112 (2008), 15402-15411.

[7] N. Hansen, F. A. B. Agbor, and F. J. Keil, New force fields for nitrous oxide and oxygen and their application to phase equilibria simulations, Fluid Phase Equil., 259 (2007), 180-188.

[6] N. Hansen, A. Heyden, A. T. Bell, and F. J. Keil, Microkinetic modeling of nitrous oxide decomposition on dinuclear oxygen bridged iron sites in Fe-ZSM-5, J. Catal., 248 (2007), 213-225.

[5] N. Hansen, A. Heyden, A. T. Bell, and F. J. Keil, A reaction mechanism for the nitrous oxide decomposition on binuclear oxygen bridged iron sites in Fe-ZSM-5, J. Phys. Chem. C, 111 (2007), 2092-2101.

[4] S. Jakobtorweihen, N. Hansen, and F. J. Keil, Combining reactive and configurational-bias Monte Carlo: Confinement influence on the propene metathesis reaction system in various zeolites, J. Chem. Phys., 125 (2006), 224709.

[3] A. Heyden, N. Hansen, A. T. Bell, and F. J. Keil, Nitrous oxide decomposition over Fe-ZSM-5 in the presence of nitric oxide: A comprehensive DFT study, J. Phys. Chem. B, 110 (2006), 17096-17114.

[2] N. Hansen, S. Jakobtorweihen, and F. J. Keil, Reactive Monte Carlo and grand-canonical Monte Carlo simulations of the propene metathesis reaction system, J. Chem. Phys., 122 (2005), 164705.

[1] S. Jakobtorweihen, N. Hansen, and F. J. Keil, Molecular simulation of alkene adsorption in zeolites, Mol. Phys., 103 (2005), 471-489.

  • Betreuung der Vorlesung "Molekularsimulation"
  • Betreuung der Vorlesung "Simulationstechnik für Master B" (SimTech)
  • seit 01/2014: Junior-Professur am ITT, Universität Stuttgart
  • 03/2010 - 12/2013: Post-Doc in der Gruppe für Informatikgestützte Chemie, Prof. van Gunsteren, ETH Zürich
  • 06/2004 – 01/2010: Doktorand am Institut für Chemische Reaktionstechnik, Prof. Keil, TU Hamburg-Harburg